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Abstract—We present a simple analytical model for the dis-
persion of a pulse radiated by a self-complementary logarithmic-
periodic antenna. The model predicts the variation in the spectral
phase, and explains the underlying mechanism behind it. The
variation in the spectral phase predicted by the model is
compared with the spectral phase measured with a Terahertz
(THz) Time Domain System (TDS) System that uses the same
type of antenna.

I. INTRODUCTION

Self-Complementary logarithmic-periodic antennas are used
extensively in continuous wave THz systems due to their
large bandwidth and constant radiation resistance. However,
they are barely used in pulsed systems since they show a
dispersive behavior, distorting the pulse. We present a simple
model for this behavior based on the varying delay that each
frequency component experiences before getting radiated. The
results are then compared to the measurements obtained with
logarithmic-periodic antenna in a THz TDS. In principle, the
results presented here are valid for any type of logarithmic-
periodic antenna.

II. DISPERSION MODEL

In a logarithmic-periodic self-complementary antenna, like
the one shown in Fig. 1, each frequency component within the
operational range of the antenna is radiated by its correspond-
ing resonant arm. The lower frequencies of the operational
range are radiated by the outer arms of the antenna. Hence, the
current has to travel a longer distance before getting radiated
as compared to high frequencies. The temporal delay of the
lower frequencies provokes dispersion of the pulse, resulting
in a chirped pulse with low frequencies being emitted at a later
time. In the frequency domain, the temporal delay results in a
variation of the spectral phase which will be calculated in the
following and compared to experimental results.

Our model is based on the following assumptions:
• The dispersion is only caused by the increasing distance

that the lower frequency components have to travel before
getting radiated.

• The resultant frequency-dependent delay, τ(f), is smooth
over the bandwidth of interest, so that the spectral phase
can be calculated using [1]:

τ(f) = − 1

2π

dφ

df
, (1)

where φ is the phase, and f is the frequency.

Fig. 1. Schematic representation of the self-complementary logarithmic-
periodic antenna used in the THz TDS setup.

In the logarithmic-periodic antenna used [2], illustrated in
Fig. 1, each radiated frequency component fi is related to the
(average) radius of the respective resonant arm, ri, by

fi =
2c0

πneffri
, (2)

where c0 is the speed of light, neff the effective refractive
index. This relationship results from the fact that the length of
each resonant arm, li, equals one eighth of the circumference
defined by ri, and that each arm is resonant when its center
length equals half a wavelength, λi/2.

Similar relations can be found for any other types of
logarithmic-periodic antenna like spirals or infinite bow tie
antennas, generally resulting in

fl = const, (3)

where l is the distance travelled by frequency component f .
This simple relation solely results from the periodic nature of
the antenna; for an n times higher frequency the resonant part
of the antenna is a factor n closer to the center.

Since τ(f) ∼ l we can re-express Eq. 3 in terms of the time
delay
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Fig. 2. Comparison between the pulse emitted by strip-line and logarithmic-
periodic antenna in the time domain.

Fig. 3. Comparison between the spectral phase of the pulse emitted by the
logarithmic-periodic antenna and the theoretical spectral phase from Eq. 3.

τ(f) ∼ 1

f
, (4)

Substituting Eq. 4 in Eq. 1 and solving for φ(f) yields

φ(f) = −φ0 ln
(
f

f0

)
, (5)

where f0 is a frequency normalization constant that depends
on the operational range of the antenna, and φ0 is a propor-
tionality constant that depends on the speed of light in the
medium.

It is worthwhile to mention that other authors have attributed
the dispersion to a logarithmic variation of the velocity of
the wave as a function of the frequency [4]. Such variation
is caused by the non-uniform distribution of the resonant
arms. This variation gets more pronounced as the frequency
decreases, since the wave starts seeing the effect of more of
these arms before it actually gets radiated [5]. Using this more
complex approach one gets the same result as in Eq. 5.

III. COMPARISON WITH EXPERIMENTAL RESULTS

To prove the validity of the theoretical considerations, the
spectral phase from Eq. 4 is compared with the spectral phase
measured by a THz TDS system. The TDS system consists of
two ErAs:In(Al)GaAs photoconductive antennas [3] excited
by a 90 fs laser pulse with a center frequency of 1550 nm.

In order to discard any external sources of dispersion in
our comparison, the response of the system is tested with two
non-dispersive antennas first. The antennas selected for this
purpose are two strip-line antennas with a photoconductive
active area of 25 µm × 25 µm; one of them acting as a
transmitter and the other one acting as a receiver. The response
of the system in the time domain is indicated by the dotted line
in Fig. 2. The pulse is not chirped, hence, we can conclude
that the system is well aligned and that there are no other
sources of dispersion.

For the comparison with Eq. 4, the transmitting strip-
line antenna is replaced by the logarithmic-periodic antenna
illustrated in Fig 1, with a photoconductive active area of 10
µm × 10 µm. The response of the system in the time domain
is shown by the solid line in Fig. 2. The pulse is highly chirped
due to the dispersion introduced by the antenna as expected
from the theoretical considerations. The spectral phase of
the pulse is obtained by taking the Fourier Transform, and
then extracting the phase. Fig. 3 compares the experimentally
obtained phase to the one predicted by Eq. 4 using f0 = 100
GHz and φ0 = 8.7 rad. The two curves show excellent
agreement. The discrepancy for frequencies below 100 GHz
has two origins: firstly, the wave experiences the finite size of
the antenna, secondly, the finite time window causes artifacts
for low frequencies, e.g. the known divergence at f → 0.

IV. CONCLUSION AND OUTLOOK

We have shown that the dispersion in a logarithmic-periodic
antenna is caused by the logarithmic change of the spectral
phase of the current, corresponding to an increasing time
delay for lower frequencies. The separation of the frequency
components in time may allow for selecting specific frequency
intervals by time-domain gating around the delay time of the
wanted frequency range.
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